Lecture Notes for Abstract Algebra: Lecture 8

1 Lagrange theorem

1.1 Cosets and Lagrange Theorem

Definition 1. Let $(G, *)$ be a group. Let $H \leqslant G$ be a subgoup. The left coset of an element $x \in G$ is the set $x H=\{x * h \mid h \in H\}$. The right coset of an element $x \in G$ is the set $H x=\{h * x \mid h \in H\}$.

Example 2. Consider the subgroup $K=\langle(12)\rangle=\{(1),(12)\}$ of S_{3}. Then the left cosets of K are:

$$
\begin{aligned}
(1) K=(12) K & =\{(1),(12)\} \\
(13) K=(123) K & =\{(13),(123)\}, \\
(23) K=(132) K & =\{(23),(132)\}
\end{aligned}
$$

The right cosets on the other hand are:

$$
\begin{gathered}
K(1)=(12) K=\{(1),(12)\} \\
K(13)=K(132)=\{(13),(132)\} \\
K(23)=K(123)=\{(23),(123)\}
\end{gathered}
$$

Lemma 3. Let H be a subgroup of a group G and suppose that $g_{1}, g_{2} \in G$. The following conditions are equivalent.
(1) $g_{1} H=g_{2} H$.
(2) $g_{1}^{-1} g_{2} \in H$.
(3) $H g_{1}^{-1}=H g_{2}^{-1}$.
(4) $g_{2} \in g_{1} H$.

Definition 4. Let G be a group. Let $H \leqslant G$ be a subgoup. The subgroup H determines an equivalence relation on G given by equality of left cosets

$$
x \sim y \Longleftrightarrow x H=y H
$$

The quotient set G / \sim_{H}, is the set $\{x H \mid x \in G\}$ of left cosets.
Definition 5. Let $H \leqslant G$ be a subgoup, the index of H in G, denoted by $[G: H]$, is the cardinality of the set of left cosets $\{x H \mid x \in G\}$.

Proposition 6. Let H be a subgroup of a group G. The number of left cosets of H in G is the same as the number of right cosets of H in G.

Proof. Let L_{H} and R_{H} denote the set of left and right cosets of H in G, respectively. We can define a bijective map

$$
\Phi: L_{H} \longrightarrow R_{H}
$$

by the formula $\Phi(g H)=H g^{-1}$. The map is well defined and bijective because of lemma 3.

Corollary 7. Let H be a subgroup of G. If the index of $[G: H]=2$, the left and right cosets are the same.

Theorem 8. (Lagrange Theorem) Let G be a group and $H \leqslant G$ a subgroup. Then

1. Let $x, x^{\prime} \in H$, any two left cosets, $x H$ and $x^{\prime} H$, has the same cardinality.
2. If $|G|$ has finite order, then $|G|=|H|[G: H]$.

Proof. The map $\psi: x H \longrightarrow x^{\prime} H$ defined by $\psi(x * h)=x^{\prime} * h$ is bijective. The set G is therefore partitioned in $[G: H]$ equivalence classes of cardinality $|H|$.

Example 9. Consider the alternate group A_{4} of order 12. The subgroups of order 2 are given by:

$$
\{\langle(12)(34)\rangle,\langle(13)(24)\rangle,\langle(14)(23)\rangle\} .
$$

Now consider the elements $(14)(23),(12)(34),(13)(24)$. We can check that multiplication of any two of those elements, gives the third one, for example:

$$
(12)(34) \circ(14)(23)=(13)(24) \quad(12)(34) \circ(13)(24)=(14)(23)
$$

Hence we can make the subgroup of order 4;

$$
H=\langle(12)(34),(14)(23)\rangle=\{1,(12)(34),(13)(24),(14)(23)\}
$$

On the other hand, the subgroups of order three can be found generated by elements of order three:

$$
\{\langle 123\rangle=\langle 132\rangle,\langle 124\rangle=\langle 142\rangle,\langle 134\rangle=\langle 143\rangle,\langle 234\rangle=\langle 243\rangle\} .
$$

In general if the index of a group $H,[G: H]=2$, the group H must contains all elements of odd order. But in A_{4} there are 8 elements of order 3. Hence, there is no such subgroup of order 6 in A_{4}, showing that the converse of Lagrange theorem is, in general, not true.

Order	Subgroups
1	$\langle 1\rangle=\{1\}$
2	$\{(1),(12)(34)\} ;\{(1),(13)(24)\} ;\{(1),(14)(23)\}$
3	$\{(1),(123),(132)\} ;\{(1),(124),(142)\}$
	$\{(1),(134),(143))\} ;\{(1),(234)(243)\}$
4	$\{(1),(12)(34),(13)(24),(14)(23)\}$
12	A_{4}

Corollary 10. Let G be a finite group and $g \in G$. The order g must divide the order of G.

Corollary 11. Let p be a prime number and G a group of order p. Then, the group G must be cyclic generated by any element $g \neq e$ in G.

Practice Questions:

1. As a group of order four, what type of subgroup is H, a \mathbb{V}_{4} or a \mathbb{Z}_{4} ?
2. Show that if $H \leqslant G$ is a subgroup of index 2 , then the group H must contains all elements of odd order.
